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Jiajun Li1, Frédéric Bosché1, Chris Xiaoxuan Lu2 and Lyn Wilson3

1School of Engineering, University of Edinburgh, UK
2School of Informatics, University of Edinburgh, UK

3Historic Environment Scotland, UK

J.Li-301@sms.ed.ac.uk, f.bosche@ed.ac.uk, xiaoxuan.lu@ed.ac.uk, lyn.wilson@hes.scot

Abstract -
Building roofs are a primary barrier of the building fab-

ric to protect building interiors and their occupants from the
effects of the weather. Effectively monitoring their condition
and maintaining them is thus critical, and even more so in
light of the increasing risks induced by climate change. Ide-
ally, this requires frequent and careful surveying, as well as
recording of the results in a way that facilitates monitoring
over time. Traditional manual data collection and defect de-
tection and recording methodologies have been used mainly
on building facades. Orthophotos are commonly used for
recording. However, (1) current approaches to generate or-
thophotos cannot ensure the photos are occlusion-free; and
(2) the results cannot be efficiently recorded in a structured,
digital way with semantic relationship to the corresponding
elements in the building Digital Twin (DT). In this paper, a
method is proposed to automatically generate high-resolution
orthophotos of roof panels from UAV data, given an existing
building DT. The resulting orthophotos have high-resolution
(e.g. 5mm per pixel). They are occlusion-free and linked
semantically to the building elements in the DT. The method
is demonstrated using a real case study of a complex pitched
slated roof of a traditional building.

Keywords -
Roof; UAV; Orthophoto; Photogrammetry; Occlusion;

Projection.

1 Introduction
As a key building element, a roof is one of the most ex-

posed elements to the environment. Elevated temperature,
moisture, material soiling can result in staining, weath-
ering and even damage to different materials [1]. Over
time, this gradually leads to roof fragility, component fail-
ure, and load redistribution, which can create further risks
to the building and its occupants [2]. Extreme climate
events, such as frequent high summer temperatures, heav-
ier winter precipitation, unpredictable wind speed, intense
storms, etc, will aggravate and accelerate deterioration to
all kinds of buildings. For traditional buildings, prevent-

ing failure and conservation measures have become prime
considerations [3]. Therefore, building roofs should be
routinely monitored, so that defects can be detected and
remedied promptly.

The first difficulty of maintaining building roofs is cap-
turing roof data, which is commonly undertaken manually.
However, with the development of digital photography,
Unmanned Aerial Vehicles (UAV) is increasingly used, as
it reduces the cost of access provision and the risks to sur-
veyors [4]. Meanwhile, digital photogrammetry has been
an active topic for generating 3D models of buildings due
to its high level of automation and the fact that it can gen-
erate 3D data at low cost [5]. The combination of these
two approaches, UAV-based photogrammetry, has been
applied to several contexts, such as archaeology, disaster
monitoring, construction monitoring, building surveying,
or land mapping [6].

In the Facility Management (FM) industry, Digital
Twins of building assets — derived from Building Infor-
mation Modelling (BIM) models — can help facility man-
agers make and record decisions related to operation and
maintenance [7]. To ease the generation of semantically-
rich 3D models which are commonly the basis of Digital
Twins, Scan-to-BIM methodologies can be applied to sur-
vey data acquired by laser scanning or photogrammetry.
For example, Rocha et al. [8] employ a manual modelling
workflow based on photogrammetry and laser scanning
data to develop a BIM model of a historic house in Lis-
bon for conservation and restoration. In [9], Adán et al.
present an integrated system to reconstruct large scenes at
five semantic levels, addressing issues of automated data
collection, to architectural building element modelling,
to small accessory component recognition. And, Valero
et al. [10] propose a Terrestrial Laser Scanning (TLS) data-
processing pipeline for producing semantic 3D models of
furnished office and home interiors.

Orthophoto imagery has been used for many decades in
FM, most commonly in the context of (traditional) build-
ing facade surveying. The advantage is that they provide a
uniform scale across the entire image, which makes them
measurable (with dimensions comparable across the or-
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thophoto) and more suitable for detecting, reporting and
assessing building defects [11]. The generation of or-
thophotos is achieved by an orthographic projection on
vertical planes [12, 13]. Recently, high-resolution or-
thophotos of facades have been used as input data for
automated detection of facade defects [14, 15, 16]. These
examples show that orthophotos are convenient for mon-
itoring buildings, and accessible for actual surface mea-
surement and (automated) analysis.

However, compared to building facades, roofs are more
easily occluded by other building elements, such as chim-
ney, dormers, aerials, satellite dishes, etc [17]. As a result,
building facade orthophotos may not enable a full view of
roofs. Figure 1 shows an example of orthophoto com-
monly generated for a whole building. One can see that,
while the stone facade(s) appear(s) fully, the middle roof
panel is occluded by the balustrades and chimneys. These
problems challenge the generation of clear orthophotos
(without occlusion and with limited blur), and ultimately
the development of automatic defect detection models, as
the models need to be agnostic to different image acquisi-
tion situations (e.g. angle, distance).

Figure 1. Orthophoto for the entire front elevation
of Duff House.

Therefore, in this study, a method is proposed for the
generation of orthophotos of pitched building roofs based
on Scan-vs-BIM context afforded by an existing building
DT. The approach generates vertical orthophotos that are
free of occlusions from other building elements and with
reduced blur.

2 Methodology
The ortho-projection method realises transformation

from a dense set of images taken by UAV and the DT
of the building to a set of orthophotos corresponding to all

roof panels defined in the DT.
This method contains 3 steps: 1. As-is 3D reconstruc-

tion; 2. Roof panel mask generation; 3. Orthophoto
generation.

2.1 Use Case

The methodology is simultaneously explained and val-
idated using data from Duff House, a traditional building
located in Banff, Aberdeenshire, Scotland. Duff House is
a category A listed, early Georgian mansion under the care
of Historic Environment Scotland (HES)1. Note that this
methodology is in fact generic, and not specific to Duff
House.

2.2 Step 1: Reconstructing building’s as-built 3D
model

Duff House was fully surveyed using a UAV equipped
with a Sony ILCE-7R digital camera, with a fixed focal
length of 35 mm. The UAV survey acquired 859 images
containing the roof, and with over 75% overlapping, en-
abled a detailed and accurate 3D reconstruction of the
roof (and upper parts of the facades). A full 3D recon-
struction of the house exterior (facades, entrance stair case,
etc.) was also obtained by merging the UAV reconstruc-
tion with a Terrestrial Laser Scanning (TLS) point cloud.
The complete 3D model of Duff House is shown in Fig-
ure 2, while the roof reconstruction from the UAV data
only is shown in Figure 3. The UAV data reconstruction
contains 2,104,179 points registered in the world coor-
dinate system. The roof is 34.2� in length and 25.7�
in width. Therefore, the average point cloud density is
approximately 2,400 points/�2.

Figure 2. Duff House complete 3D reconstruction.

1https://www.historicenvironment.scot/
archives-and-research/publications/publication/
?publicationId=d752300f-2266-4574-8334-a57000ca8ed8/
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The complete roof contains 36 slated panels, 20 of
which are planar and 16 are curved. Aside from the slated
roof panels, there is also significant leadwork surrounding
the panels, as well as chimneys and decorative components
nearby, like stone ornaments and balustrades, which can
cause shadow and occlusions when taking images with
UAV. Panel ’4’ in Figure 3 will be used to illustrate the
processing for occlusion handling, while all four represen-
tative panels highlighted in the figure will be shown in the
section reporting the final results.

Figure 3. Reconstructed 3D point cloud of Duff
House’s roof. Four representative roof panels are
highlighted that are used to illustrate and validate
the proposed method.

Based on the input DT, a more granular model was
built with an Industry Foundation Classes (IFC) object for
each roof panel. This model simply needs to contains
the geometry and location of each roof. As shown in
Figure 4, all the panel models were built for representing
only the slate part, without components such as leadwork
and windows — for a reason that falls outside the scope
of this paper. The geometry of each panel is defined as
panel boundary with extrusion. As input to the proposed
process, geometries of each roof were then defined as
triangle meshes.

2.3 Step 2: Generating roof panel masks

The purpose of this step is to define, for each input UAV
image, the parts of the image corresponding to a given
roof panel. The boundary of each roof panel model is
defined in world coordinate system. According to the input
image camera external calibration in this world coordinate,
this boundary can be transferred into the camera’s 3D
coordinate system, using equation 1.

Figure 4. Roof panel models.
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where Pc and Pw are the point coordinates in camera sys-
tem and world system respectively. R represents the 3 × 3
rotation matrix in the world system, defined by the three
camera rotation angles around �, �, and � axes. t represents
the 3 × 1 camera translation vector.

Some camera system would contain a polynomial dis-
tortion transformation, which is optional and varies with
different camera settings. Such processing should be ap-
plied to normalize P� by dividing its first two components,
�� and ��, by its last one ��.

Next, each 3D point Pc can be projected to the 2D image
coordinate system, where the origin is the image centre,
using equation 2. The output results � and �, in range
[-0.5, 0.5], are relative coordinates in the image system
(centre as the origin).
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where K is the 3 × 3 camera’s internal calibration matrix,
containing focal length, camera skew, aspect ratio, and
principle point offset. Finally, the above output results,
� and �, should be scaled to the image pixels and trans-
formed to where the top left corner is the origin of image
coordinate system, as defined in Equation 3.




scale = max(w, h)
x = scale ∗ � + �/2
y = scale ∗ � + ℎ/2

(3)

where� and ℎ are the width and height pixels of the image.
� and � compose the pixel coordinate in the image.



With this process, the boundary polygon of the target
roof panel can be projected onto the image. The mask
image for the input UAV image and for the given roof
panel is then generated by setting the RGB value of all the
pixels outside the polygon as [0, 0, 0], and those inside the
polygon as [1, 1, 1].

By applying this process to all UAV pictures, the subset
of pictures that captures at least part of a given roof panel
is identified and, for each of those pictures, the set of pixels
corresponding to that panel are also identified.

2.4 Step 3: Generating orthophotos

After generating all the mask images containing the
given target roof panel, the masked UAV images can be
converted into an orthophoto. For this, all the pixels in
the masked area are projected on the model of the panel
boundary in the world coordinate system, and these pro-
jections are then projected on the pre-defined orthophoto.

The plane of projection of each orthophoto is defined
by computing the principal axes of the roof panel using
Principal Component Analysis (PCA) [18]. A rotation
matrix RPCA derived in this process defines the projection
plane of the orthophoto in the world coordinate system of
the reconstructed DT mesh data. As illustrated in Figure 5,
the plane YOZ is the orthophoto projection plane for the
roof panel ’4’.

The orthophoto generation process then includes 3
steps: 1. (2D-3D) All the coloured 2D pixels in orig-
inal masked image are firstly projected to the DT mesh
data, with corresponding 3D points as output; 2. (3D-
2D) All the 3D points derived are then projected onto the
orthophoto plane. 3. The orthophoto boundary in the
projection plane is then set based on the projection of the
panel geometry and the resolution of the orthophoto is set
to the required value — we use 5𝑚𝑚 × 5𝑚𝑚 per pixel.

Figure 5. Orthophoto generation.

The outcome of the above process is an orthophoto

generated from each of the input UAV picture and for
each given roof panel. These orthophotos can be used
as-is for analysis. However, because of the fact that the
original UAV images were taken from different angles and
locations, pixels from occluders still exist and resolution
artefacts can appear. The orthphoto in Figure 6a is a typical
example: some pixels remain black because no original
pixel reprojects on them, because the input image was too
far and oblique. Also, the orthophoto contains occlusions
by a nearby chimney.

We address these issues by merging all orthophotos
for one roof panel into one. The images can be merged
into one, by calculating the median value of the RGB for
each orthophoto pixel. If, as we have observed, occlu-
sions appear in fewer than 50% of the images, merging the
orthophotos could help eliminate occlusions. Figure 6b
shows the result of merging the 45 orthophotos obtained
from the 45 UAV images in which roof panel ’4’ appears.

As can be seen, the resulting orthophoto is free of pixels
from occluders and also does not contain any hole (i.e.
empty pixel) in the roof panel area. However, careful
observation shows that these merged images often contain
significant amount of blur, which is attributed to small
errors from the photogrammetric process.

To reduce the influence of these errors, the small shifts
between images are detected and a correction applied. For
this, Scale-Invariant Feature transform (SIFT) features are
detected and matched across images [19]. Figure 7 shows
the SIFT feature matching between two orthophotos. The
green lines show SIFT matches between them two. Based
on this, the homography can be computed and applied to
the right orthophoto before merging it with the left one.
This process is applied by selecting one orthophoto as the
baseline, and shifting all the other ones to align them to it.
The baseline orthophoto is ideally the one with best visual
quality, and is selected by choosing the smallest values of
the filtering parameters introduced below.

Afterwards, the median value for each pixel can be cal-
culated taking into account all shifted orthophotos, to gen-
erate a merged orthoimage. As can be seen in Figure 6c,
the resulting median orthophoto has less blur than that of
the initial median orthophoto.

However, due to the fact that images were taken from
various distances and with various incidence angles, not
all the images contribute well to the merged orthophoto.
Therefore, image filtering should first be carried out based
on the angle and distances in order to remove those images
that are just taken from too far or with angles that are too
oblique. As illustrated in Figure 8, we define the ray shot
from the pinhole camera 𝑂𝑖 through the image centre 𝐶𝑖 ,
and the intersection point with the roof plane is named
as 𝐶′

𝑖
. Let’s call 𝐶𝑝 the centre of the target panel, and

®𝑛𝑝 its normal. Therefore, the first filtering parameter in



(a) Orthophoto with occlusions and artefacts.

(b) Initial median orthophoto for roof panel ’4’.

(c) Median orthophoto for roof panel ’4’ after application of the
fine alignment process.

(d) Median orthophoto for roof panel ’4’ after application of the
fine alignment and filtering processes.

Figure 6. Merging result comparison between dif-
ferent datasets.

this study is the angle 𝛼𝑝𝑖 between
−−−→
𝐶′
𝑖
𝑂𝑖 and ®𝑛𝑝 , which

captures the picture incidence angle between respect to
the roof panel. The second filtering parameter 𝑑1

𝑝𝑖
is

the distance ∥−−−→𝑂𝑖𝐶
′
𝑖
∥, which broadly captures the distance

from the camera to the roof panel along the view direction.
Finally, the third filtering parameters 𝑑2

𝑝𝑖
is the distance

Figure 7. Pixel shifting.

∥−−−−→𝐶𝑝𝐶
′
𝑖
∥ normalised by the maximum dimension of this

panel 𝑑𝑚𝑎𝑥
𝑝 , which can be used to measure whether the

camera is pointing at the target panel or away from it. The
smaller 𝛼𝑝𝑖 , 𝑑1

𝑝𝑖
and 𝑑2

𝑝𝑖
are, the better the capture of the

roof panel in the image should be.

Figure 8. Explanation of different parameters for
screening.

In the Duff House example, as mentioned earlier, ini-
tially 45 images contain the target roof panel ’4’. Their
𝛼𝑝𝑖 , 𝑑1

𝑝𝑖
and 𝑑2

𝑝𝑖
values are presented in the 3D scatter

plot in Figure 9. For the target panel here, the thresholds
for 𝛼𝑝𝑖 , 𝑑1

𝑝𝑖
and 𝑑2

𝑝𝑖
are: 45°, 34m and 2. The angle 45°

is defined somewhat arbitrarily but is set because beyond
that images would be too oblique. The distance 34m is
set as twice the value of the average UAV flying height
from the roof. The relative distance 2, means twice the
value of the largest dimension of the roof. In this case, 12
images simultaneously meet all these three requirements.
Figure 6d shows the median orthophoto obtained using
only the filtered set of images.

The final orthophoto in Figure 6d presents significantly
less blur than the median orthophoto in Figure 6c obtained
without image filtering. Furthermore, the proposed image
dataset filtering appears to help balance the lighting con-
dition in the whole image, with Figure 6b and Figure 6c
both showing a brighter section at the top of the panel,
while Figure 6d does not show it.

3 Further Results
The application of the proposed method to four repre-

sentative panels in Figure 3 are reviewed here. Panel ’1’ is
the largest panel within the whole roof, placed on the front
and back side of the house (easily occluded by balustrades,
chimneys and towers in some images, it doesn’t appear



Figure 9. 𝛼𝑝𝑖 , 𝑑1
𝑝𝑖

and 𝑑2
𝑝𝑖

in different images.

completely in any single image). Panel ’2’ is a curved
panel placed on the one of the towers of the house (easily
occluded by stone ornaments). Panel ’3’ is one of the
triangular panels placed near the middle of the roof with
almost no occlusion. Finally, Panel ’4’ is one of the panels
placed on the side of the house (easily occluded by the
towers and balustrades on the edges).

The results obtained for panel ’1’ to ’3’ are shown in
Figure 10. The results are evaluated qualitatively and
quantitatively, considering: 1. whether the occlusions
from other components have been removed; 2. the general
level of blur the orthophoto presents (which can be eval-
uated by assessing the sharpness of the boundary of each
slate); and 3. the mean percentage of matched features �̄�
described below.

To quantify the quality of the final merged orthophoto
for each panel, we propose to use the mean percentage of
matched features, �̄�, calculated as:

�̄� =

∑
𝑖∈O\{𝑏} |F 𝑏

𝑖
|

|F𝑏 |
(4)

where O is the set of orthophotos associated to the given
panel, 𝑏 is the baseline orthophoto, and F 𝑏

𝑖
is the set of

SIFT features from orthophoto 𝑖 matched to the baseline
orthophoto, and F𝑏 is the set of SIFT features from or-
thophoto 𝑏.

Panel ’1’ presents the worst result, with the most sig-
nificant and uneven level of blur. For this panel, �̄� = 5%,
which is the lowest among all the panels. This is likely due
to the large size of the panel, which results in the whole
panel not being seen completely in any single image meet-
ing the acquisition minimum requirements in terms of the
parameters 𝛼𝑝𝑖 , 𝑑1

𝑝𝑖
and 𝑑2

𝑝𝑖
. As a result, the alignment

process described in Section 2.2 starts with one image that
only covers a part of the roof. Notwithstanding, in com-
parison to Figure 1, all the potential occlusions for this

panel are successfully removed. The result for the curved
Panel ’2’ is better, with �̄� = 16%. This is likely because
it is smaller and not as occluded, so that the baseline or-
thophoto has more matches with the other orthophotos
have the most matches with the baseline. In the small-
est Panel ’3’, the details are more clear under magnifica-
tion: defects like the shallow organic growth appear very
clearly. In this case again, �̄� = 12%. Note that, for Panel
’4’, �̄� = 10%. In general, The �̄� values of panel ’2’ to ’4’
are high.

The orthophoto examples in Figure 6d and Figure 10
illustrate two advantages: the slated roofs are clearly and
precisely extracted and may thus be well suited for the ap-
plication of automated defect detection models (e.g. deep
learning based models). Besides, no matter which angle
was the image taken or where the panel is located, the final
orthophotos are all vertical, with the slates appearing as
parallel horizonal rows in all images. This should further
ease the development and application of robust automated
defect detection models — and such representation also
remains suited for manual defect annotation using current
manual methodologies.

4 Discussion
The novel method for generating vertical orthophotos

free of occlusions shows good results. Occlusions are cur-
rently handled by analysing the frequency of RGB and
selecting the median value. While the method works
reasonably well in the four representative examples pre-
sented, in some extreme cases, occlusions could appear
in a large(r) number of images, which would defeat the
proposed approach and cause shadows in the final merged
orthophotos. For example, when some decorative compo-
nents are placed right above or too close to the target panel,
only when the UAV is flown exactly at the right location
can the entire panel be captured without occlusion, which
would require great skills as well as meticulous planning
by the operator.

An alternative, more robust approach to deal with oc-
clusions is to use depth information to refine the image
masks (see section 2.3). Indeed, if the panel view is un-
obstructed, the depth associated to a pixel should be the
range of the ray going through the pixel and intersecting
the roof panel plane. But, if the ray intersects the overall
reconstruction mesh (see Figure 2) at an occluding point,
then the range will be significantly shorter, and the pixel
should be labelled occluded and added to the mask. The
remaining steps of the proposed process would then be
applied as described.

From the final orthophoto of the curved panel, the slates
closer to the top appear narrower than the ones near the
bottom, due to the curvature of the panel. This illustrates
the limitation of using vertical orthophotos. To solve such



(a) Panel ’1’.

(b) Panel ’2’. (c) Panel ’3’.

Figure 10. Generated orthophotos of typical panels.

a problem, an alternative approach to create orthophotos
could be to define the projection plane perpendicular to
the mean normal of the roof panel, i.e. along the two
principal axes of the panel. Note that this would benefit
the generation of orthophotos of planar roof panels as well.
The reason why we have focused on generating vertical
orthophotos is that this is in line with current practice by
surveying professionals (as shown in Figure 1).

5 Conclusion
Current approaches to generate orthophotos for entire

building facades have two main limits: lacking semantic
link to the BIM model, and unavoidable occlusions in spe-
cific building area. To deal with these problems, this study
proposes a new approach that generates an orthophoto for
each building element, and illustrates the method specif-
ically in the challenging context of roofs. The proposed
method combines building reconstruction, camera pro-
jection, and orthophoto image generation with occlusion
removal. The main benefits of the proposed approach are:

1. Orthophotos contain data for all parts of the roof ele-
ments and occlusions by other building elements are
eliminated through the proposed merging mechanism
that calculates the median orthophoto.

2. By introducing image filtering parameters (i.e. in-
cidence angle and distances), the quality of the final
merging orthophoto is further improved, with less
blur and seemingly improved colour balancing.

3. Given a 3D model, the orthophoto generation pro-
cess is fully automatic, and could bring convenience
to current surveying practice, as well as emerging
digitalised and automated methodologies, with the
orthophotos (and any result that would be obtained

from their analysis) semantically linked to elements
in the Digital Twin or Digital Logbook — of the
building.

4. The proposed method can be applied to drone survey
data acquired (at frequent intervals in the case of
pro-active maintenance schemes) over the life of the
building. The orthophotos acquired at each epoch can
be used to detect defects and the comparison of the
results across epochs be used to assess the evolution
of defects over time.
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